HO JAE LEE

hjlee201@mit.edu | +1 8577069019 | hojae-io.github.io | MIT, Cambridge, MA, USA

RESEARCH INTEREST

- Machine learning and cooperation in autonomous robotic systems
- Trajectory planning and decision making of multi-agent mobile robots
- Deep reinforcement learning for robotics locomotion and manipulation

EDUCATION

Massachusetts Institute of Technology, USA Ph.D. Candidate Mechanical Engineering

ETH Zürich, Switzerland Master of Science Robotics, Systems and Control

Seoul National University, South Korea B.S. in Mechanical and Aerospace Engineering Minor: Mathematics

Undergraduate Researcher (Advisor: Prof. Nojun Kwak)

RESEARCH EXPERIENCE

Biomimetic Robotics Lab	Cambridge, Massachusetts, USA
Research Assistant (Advisor: Prof. Sangbae Kim)	Sep 2023 - Present
Developed MPC and RL based control algorithms for MIT Humanoid	
Biomimetic Robotics Lab	Cambridge, Massachusetts, USA
Visiting Student Research Assistant (Advisor: Prof. Sangbae Kim)	Oct 2022 - Aug 2023
Developed model predictive control and deep reinforcement learning com Humanoid	bined control algorithms for MIT
Robotic Systems Laboratory	Zürich, Switzerland
Semester Student Project (Advisor: Prof. Marco Hutter)	Feb 2022 - Oct 2022
Developed deep reinforcement learning algorithms for learning human robot h strations	nandover skills from human demon-
Saige Research	Seoul, South Korea
Software Engineer Research Intern (Advisor: Prof. Frank Chongwoo Park)	Feb 2021 - Aug 2021
Developed deep learning-based OCR algorithms for detecting characters on	various textures and angles
Integrated Design of Aerospace System 1, 2	Seoul, South Korea
Undergraduate Researcher (Advisor: Prof. Hyoun Jin Kim)	Mar 2020 - Dec 2020
Developed monocular visual odometry for pose estimation and trajectory UAV control	tracking of UAV for autonomous
Machine Intelligence & Pattern Recognition Lab(MIPAL)	Seoul, South Korea

Sep 2023 - Present

 $\begin{array}{c} Aug \ 2021 \ - \ Aug \ 2023 \\ \mbox{Cumulative GPA: } 5.62 \ / \ 6.0 \end{array}$

Mar 2016 - Aug 2021 Cumulative GPA: 4.01 / 4.3 Class Rank: 10/144

Se	eoul, So	uth F	forea
Jul	2020 -	Aug	2020

- $\cdot\,$ Estimated age from a person's image using various CNN models with IMDb-Wiki dataset
- $\cdot\,$ Compared algorithms efficiency of various object detection model

Undergraduate Independent Study 1

Undergraduate Researcher (Advisor: Prof. Hyoun Jin Kim)

 \cdot Researched vision-based automatic control of an unmanned delivery drone for variable target points

Student-Directed Education Undergraduate Research ProgramSeoul, South KoreaUndergraduate Researcher (Advisor: Prof. Hyoun Jin Kim)Jun 2019 - Nov 2019

 \cdot Designed a drone for unmanned delivery service and developed algorithms for automatic control for variable target points

PUBLICATION

Ho Jae Lee, Seung Won Yeo, Hoseong Seo.

Design and Flight Control to Variable Target Points of a Drone for Unmanned Delivery Service. Proceedings of the 2020 Fall Conference of The Korean Society for Aeronautical and Space Sciences

RELEVANT COURSES

1. Robot Dynamics (Lectured by Prof. Marco Hutter)

Learn - How to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.

2. Planning and Decision Making for Autonomous Robots (Lectured by Prof. Emilio Frazzoli)

Learn - Discrete planning, shortest path problems, planning under uncertainty, game-theoretic planning, geometric representations, configuration space, grids, lattices, visibility graphs, sampling-based methods.

3. Dynamic Programming and Optimal Control (Lectured by Prof. Raffaello D'Andrea)

Learn - Dynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.

4. Probabilistic Artificial Intelligence (Lectured by Prof. Andreas Krause)

Learn - Probability; Probabilistic inference (variational inference, MCMC); Bayesian learning (Gaussian processes, Bayesian deep learning); Probabilistic planning (MDPs, POMPDPs); Multi-armed bandits and Bayesian optimization; Reinforcement learning

5. Model Predictive Control (Lectured by Prof. Melanie Zeilinger)

Learn - Design and implement Model Predictive Controllers (MPC) for various system classes to provide high performance controllers with desired properties (stability, tracking, robustness,...) for constrained systems.

6. Recursive Estimation (Lectured by Prof. Raffaello D'Andrea)

Learn - Bayes' theorem; Bayesian tracking; extracting estimates from probability distributions; Kalman filter; extended Kalman filter; particle filter; observer-based control and the separation principle.

7. Machine Perception (Lectured by Prof. Otmar Hilliges)

Learn - Timeseries modelling (RNN, GRU, LSTM); Latent variable models (VAEs); Generative adversarial networks (GANs); Autoregressive models (PixelCNN, PixelRNN, TCNs); Invertible Neural Networks / Normalizing Flows; Fully Convolutional architectures for dense per-pixel tasks (i.e., instance segmentation); Neural shape modeling (implicit surfaces, neural radiance fields);

8. Vision Algorithms for Mobile Robotics (Lectured by Prof. Davide Scaramuzza)

Seoul, South Korea Mar 2020 – Jun 2020 Learn - Key computer vision algorithms used in mobile robotics, such as image formation, filtering, feature extraction, multiple view geometry, dense reconstruction, tracking, image retrieval, event-based vision, visual-inertial odometry, Simultaneous Localization And Mapping (SLAM), and some basics of deep learning

TECHNICAL SKILLS

Programming skills: C, C++, Python, Matlab **Framework:** ROS, PX4(MAVROS, MAVSDK), Gazebo, PyTorch, OpenCV **Languages:** English(Fluent, TOEFL: 113), Korean(Native)